Nonassociative Algebras Obtained from Skew Polynomial Rings

Christian Brown

University of Nottingham

Christian.Brown@nottingham.ac.uk

13th June, 2017

Christian Brown (Nottingham University) Nonassociative Algebras Obtained from Skew

- 2 Skew polynomial rings
- How to construct nonassociative algebras S_f using skew polynomial rings
- 4 Properties of the algebras S_f
- 5 Solvable Crossed Product Algebras Revisited

Let F be a field. An algebra A is an F-vector space together with a bilinear map A × A → A, (x, y) → xy which we call the multiplication of A. We assume that our algebras are unital, i.e. they contain a multiplicative identity 1.

- Let F be a field. An algebra A is an F-vector space together with a bilinear map A × A → A, (x, y) → xy which we call the multiplication of A. We assume that our algebras are unital, i.e. they contain a multiplicative identity 1.
- The **associator** of three elements of an algebra A is defined as [x, y, z] = (xy)z x(yz).

- Let F be a field. An algebra A is an F-vector space together with a bilinear map A × A → A, (x, y) → xy which we call the multiplication of A. We assume that our algebras are unital, i.e. they contain a multiplicative identity 1.
- The **associator** of three elements of an algebra A is defined as [x, y, z] = (xy)z x(yz).
- We define the left nucleus, middle nucleus and right nucleus as

$$Nuc_{I}(A) = \{x \in A : [x, A, A] = 0\}$$
$$Nuc_{m}(A) = \{x \in A : [A, x, A] = 0\}$$
$$Nuc_{r}(A) = \{x \in A : [A, A, x] = 0\}$$

The **nucleus** of *A* is their intersection.

We say an algebra 0 ≠ A is left division (resp. right division) if left multiplication L_a : x → ax (resp. right multiplication R_a : x → xa) are bijective for all 0 ≠ a ∈ A.

- We say an algebra 0 ≠ A is left division (resp. right division) if left multiplication L_a : x → ax (resp. right multiplication R_a : x → xa) are bijective for all 0 ≠ a ∈ A.
- A is a division algebra if it is both left and right division.

Skew Polynomial Rings (Ore, 1933)

Let D be an associative division ring, σ an endomorphism of D and let δ be a **left** σ -derivation of D. i.e., $\delta : D \to D$ is an additive map and satisfies

$$\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$$

for all $a, b \in D$.

Skew Polynomial Rings (Ore, 1933)

Let D be an associative division ring, σ an endomorphism of D and let δ be a **left** σ -derivation of D. i.e., $\delta : D \to D$ is an additive map and satisfies

$$\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$$

for all $a, b \in D$.

Definition

The skew polynomial ring $R = D[t; \sigma, \delta]$ is the set of left polynomials

$$a_0 + a_1t + a_2t^2 + \ldots + a_nt^n , a_i \in D$$

where addition is defined term-wise and multiplication by the rule

$$ta = \sigma(a)t + \delta(a)$$
 for all $a \in D$.

• $D[t; \sigma] = D[t; \sigma, 0]$ is called a **twisted polynomial ring**

A .

- $D[t; \sigma] = D[t; \sigma, 0]$ is called a **twisted polynomial ring**
- $D[t; 1, \delta] = D[t; \delta]$ is called a differential polynomial ring.

- $D[t; \sigma] = D[t; \sigma, 0]$ is called a twisted polynomial ring
- $D[t; 1, \delta] = D[t; \delta]$ is called a differential polynomial ring.
- *D*[*t*; *id*, 0] is the usual left polynomial ring.

- $D[t; \sigma] = D[t; \sigma, 0]$ is called a twisted polynomial ring
- $D[t; 1, \delta] = D[t; \delta]$ is called a differential polynomial ring.
- D[t; id, 0] is the usual left polynomial ring.
- We define the **degree** of a polynomial $f(t) = a_n t^n + \ldots + a_1 t + a_0$, $a_n \neq 0$ to be deg(f) = n and deg $(0) = -\infty$.

- $D[t; \sigma] = D[t; \sigma, 0]$ is called a twisted polynomial ring
- $D[t; 1, \delta] = D[t; \delta]$ is called a differential polynomial ring.
- D[t; id, 0] is the usual left polynomial ring.
- We define the **degree** of a polynomial $f(t) = a_n t^n + \ldots + a_1 t + a_0$, $a_n \neq 0$ to be deg(f) = n and deg $(0) = -\infty$.
- We say that a polynomial $f \in R = D[t; \sigma, \delta]$ is **irreducible** if it is not a unit and has no proper factors. i.e there do not exist $g(t), h(t) \in R$ with $\deg(g(t)), \deg(h(t)) < \deg(f(t))$ such that f(t) = g(t)h(t).

- $D[t; \sigma] = D[t; \sigma, 0]$ is called a twisted polynomial ring
- $D[t; 1, \delta] = D[t; \delta]$ is called a differential polynomial ring.
- D[t; id, 0] is the usual left polynomial ring.
- We define the **degree** of a polynomial $f(t) = a_n t^n + \ldots + a_1 t + a_0$, $a_n \neq 0$ to be deg(f) = n and deg $(0) = -\infty$.
- We say that a polynomial $f \in R = D[t; \sigma, \delta]$ is **irreducible** if it is not a unit and has no proper factors. i.e there do not exist $g(t), h(t) \in R$ with $\deg(g(t)), \deg(h(t)) < \deg(f(t))$ such that f(t) = g(t)h(t).
- *R* is a left principal ideal domain and there exists a right division algorithm in *R*: for all $f, g \in R$, $f \neq 0$ there exists unique $r, q \in R$, $\deg(r) < \deg(f)$ such that

$$g=qf+r.$$

How to construct nonassociative algebras using skew polynomial rings

Definition (Petit (1966))

Let $f(t) \in R = D[t; \sigma, \delta]$ be of degree *m* and let mod_r *f* denote the remainder of right division by f(t).

$$R_m = \{g \in D[t; \sigma, \delta] \mid \deg(g) < m\}, \ g \circ h = gh \ \mathrm{mod}_r f$$

is a unital nonassociative algebra $S_f = (R_m, \circ)$ over

$$F = \{a \in D \mid ah = ha \text{ for all } h \in S_f\}.$$

 S_f is also denoted R/Rf.

How to construct nonassociative algebras using skew polynomial rings

Definition (Petit (1966))

Let $f(t) \in R = D[t; \sigma, \delta]$ be of degree *m* and let mod_r *f* denote the remainder of right division by f(t).

$$R_m = \{g \in D[t; \sigma, \delta] \mid \deg(g) < m\}, \ g \circ h = gh \ \mathsf{mod}_r f$$

is a unital nonassociative algebra $S_f = (R_m, \circ)$ over

$$F = \{a \in D \mid ah = ha \text{ for all } h \in S_f\}.$$

 S_f is also denoted R/Rf.

Hamilton's quaternion algebra is the algebra S_f for $f(t) = t^2 + 1 \in \mathbb{C}[t; \sigma]$ where σ denotes complex conjugation.

Properties of the algebras S_f

Theorem (Petit (1966))

Let $f(t) \in R = D[t; \sigma, \delta]$ be of degree m. (i) If S_f is not associative then

$$Nuc_l(S_f) = Nuc_m(S_f) = D$$

and

$$Nuc_r(S_f) = \{u \in R_m : fu \in Rf\}.$$

(ii) S_f is associative iff f(t) is right invariant iff Rf is a two-sided ideal of R.

Properties of the algebras S_f

Theorem (Petit (1966))

Let $f(t) \in R = D[t; \sigma, \delta]$ be of degree m. (i) If S_f is not associative then

$$Nuc_l(S_f) = Nuc_m(S_f) = D$$

and

$$Nuc_r(S_f) = \{u \in R_m : fu \in Rf\}.$$

(ii) S_f is associative iff f(t) is right invariant iff Rf is a two-sided ideal of R.

• If Rf is a two-sided ideal then $S_f = \frac{R}{Rf}$ is the classical quotient ring.

Properties of the algebras S_f

Theorem (Petit (1966))

Let $f(t) \in R = D[t; \sigma, \delta]$ be of degree m. (i) If S_f is not associative then

$$Nuc_l(S_f) = Nuc_m(S_f) = D$$

and

$$Nuc_r(S_f) = \{u \in R_m : fu \in Rf\}.$$

(ii) S_f is associative iff f(t) is right invariant iff Rf is a two-sided ideal of R.

• If Rf is a two-sided ideal then $S_f = \frac{R}{Rf}$ is the classical quotient ring.

• If Rf is not two-sided then S_f is central. That is, $Cent(S_f) = Comm(S_f) \cap Nuc(S_f) = F_0.$

Theorem

Let $f(t) \in D[t; \sigma, \delta]$.

(i) f(t) is irreducible iff S_f is a right division algebra.

Theorem

- Let $f(t) \in D[t; \sigma, \delta]$.
 - (i) f(t) is irreducible iff S_f is a right division algebra.
- (ii) (Petit, 1966). Suppose S_f is a finite-dimensional F_0 -vector space or a finite-dimensional right $Nuc_r(S_f)$ -module. Then S_f is division iff f(t) is irreducible.

Theorem

- Let $f(t) \in D[t; \sigma, \delta]$.
 - (i) f(t) is irreducible iff S_f is a right division algebra.
- (ii) (Petit, 1966). Suppose S_f is a finite-dimensional F_0 -vector space or a finite-dimensional right $Nuc_r(S_f)$ -module. Then S_f is division iff f(t) is irreducible.
- (iii) Suppose S_f is associative. Then f(t) is irreducible iff S_f is a division algebra.

Let *F* be a field and *A* be a central simple algebra over *F* of degree *n*. *A* is called a *G*-crossed product algebra if it contains a field extension M/F which is Galois of degree *n* with Galois group G = Gal(M/F).

Let *F* be a field and *A* be a central simple algebra over *F* of degree *n*. *A* is called a *G*-crossed product algebra if it contains a field extension M/F which is Galois of degree *n* with Galois group G = Gal(M/F).

Suppose G is a finite solvable group, then there exists a chain of subgroups

$$\{1\} = G_0 < G_1 < \ldots < G_k = G,$$

such that G_j is normal in G_{j+1} and G_{j+1}/G_j is cyclic of prime order q_j for all $j \in \{0, \ldots, k-1\}$.

Theorem (Petit (1966), B.-Pumplün (2017))

Let M/F be a field extension of degree n with non-trivial $G = \operatorname{Aut}_F(M)$, and A be a central simple algebra of degree n over F containing M. Then G is solvable if there exists a chain of subalgebras

$$M = A_0 \subset A_1 \subset \ldots \subset A_k \subseteq A,$$

of A which all have maximal subfield M, where A_k is a G-crossed product algebra over Fix(G), and where

$$A_{i+1} \cong A_i[t_i;\tau_i]/A_i[t_i;\tau_i](t_i^{q_i}-c_i),$$

for all $i \in \{0, \ldots, k-1\}$, such that

- q_i is the prime order of the factor group G_{i+1}/G_i in the chain of normal subgroups,
- τ_i is an *F*-automorphism of A_i of inner order q_i which restricts to $\sigma_{i+1} \in G_{i+1}$ which generates G_{i+1}/G_i , and
- $c_i \in Fix(\tau_i)$ is invertible.

If A is a crossed product algebra then $A_k = A$.

Theorem (B.-Pumplün (2017))

Let A be a central division algebra of degree n over F with maximal subfield M and non-trivial $\sigma \in \operatorname{Aut}_F(M)$ of order h. Then A contains a cyclic division algebra

 $(M/\operatorname{Fix}(\sigma), \sigma, c) \cong M[t; \sigma]/M[t; \sigma](t^h - c)$

of degree h over $Fix(\sigma)$ as a subalgebra.

It is well known that a central division algebra of prime degree over F is a cyclic algebra iff it contains a cyclic subalgebra of prime degree (though not necessarily with center F). This yields the following:

Corollary

Let A be a central division algebra over F of prime degree p. Then either A is a cyclic algebra or each of its maximal subfields M has trivial automorphism group $\operatorname{Aut}_F(M)$.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The End

э.

æ